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Content

What is the relation between energy,
entropy and information ?



information

mformat\on
From latin/italian;: INFORMARE

informo, informas, informavi, informatum, informare

y;‘

\

FORMA = SHAPE

Meaning: “to give shape to something”

extended meaning*“to instruct somebody (give shape to the mind)”
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ITnformation and communlcation
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C. Shannon, 1948 A Mathematical Theory of Communication

Available at: http://www fisica.unipg.it/~gammaitoni/infolfis/documenti/shannon 1948 .pdf



Information: what is it?

It 1s a property of a message.
A message made for communicating something.

We say that the information content of a message 1s greater
the greater 1s its casualty.

In practice the less probable 1s the content od the message
the more 1s the information content of that message.

Let’s see examples...



Information: what is it?

Let’s suppose we are waiting for an answer to a question.
The answer 1s the message.

The two messages have the same information content.




Information: what is it?

Let’s suppose we are waiting for an answer to a question.
The answer 1s the message.

The two messages have the different information content.




Information: how do we measure it?
Let’s suppose we want to transmit a text message:

My dear friend....

We have a number of symbols to transmit... 25 lower case letters + 25
upper case letters + punctuation + ...

Too large a number of different symbols... it is unpractical.

We can use a coding that assign letters to numbers.
E.g. the ASCII code: A=65, B=66,C=67, ... a=97,b=98,¢c=99 ...

The advantage is that we have a small number of different symbols:

0,1,2,34,5,6,7,89

But the message becomes longer...
Example: caro amico --------------- > 6797114111 97 109 10599 111



Information: how do we measure it?

We send the message: 6797 114 111 97 109 10599 111

How much information are we sending?
We assume that information is an additive quantity, thus the information

of the message is the sum of the information of the single components of
the message, 1.e. the symbols.

Now: if I send the symbol “4”” how much information is in it?

Answer: it depends on the probability of that symbol, meaning the
probability that the specific symbol “4” happens to be in my message.



Information: how do we measure it?

We send the message: 6797 114 111 97 109 10599 111

If we call p, the probability of having “4”and generically
p, the probability of having the symbol “x” (a given number) we have:

I=-Klogp,

Amount of information associated with symbol “x”.
This 1s technically known also as “Self-information” or “Surprisal”.



Information: how do we measure it?

We send the message: 6797 114 111 97 109 10599 111

If we have a message with n,_ symbol “x”; n, symbol “y” and so on.. :

I=-K(n,logp,+n, logp, +..)

Information 1s an additive quantity



Entropy

The entropy of a discrete message space M is a measure of the
amount of uncertainty one has about which message will be chosen.
It is defined as the average self-information of a message x from that

message space:

H = - K p,log p,

Amount of information associated with symbol “x”.
This is technically known also as “Entropy™.



Information: binary is better

In order to reduce the error probability during transmission is more
convenient codify the numbers in base 2, with only two symbols: “0, “1”

Now our message appears like: 0110110000101000111

If it 1s long m characters (with m large), the probability p, = p, = 1/2

H=-Km1l1/nlog (1/n)
=-Km/n(-logn)=Km/nlogn

H=Km/nlogn=2m/2log, 2=m

Thus H = m = number of bits



L_e-@. 3— jnformation

0. €. @~ In-forma = in shape

L & @ @ Information =
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v @ @/ v The shape of an object is

Ve (‘g/ a visual maifestation of the amount of
g / Information encoded in that object...




Example witn LEGO bricks
Shape = Pattern = Configuration... FORMA
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Atoms ¢ Information =




How can we associate information to a given shape?

Let’s consider a simple example...

1) Define shape

o v 3 . ,,’A
1




2) Count shapes
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m
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15 different shapes



3) Count configurations

Indistinguishable particles. Each shape can be realized with a different
arrangement of the marbles

H

H Class 1, each shape num. of Conf.: 1

m
m
T

I E E Class 3, Conf.: 3

Class 4, Conf.: 1



In general...

In general if we have ¢ indistinguishable particles that
can be distributed in r distinguishable sites, a single
shape s;; is characterized by two indexes: the class index
i = 1,2,..r and, within a single class, the shape index
j=1,2,..C(r,i) where C(r,1) is the binomial coefficient.
The total number of different shapes is given by

Ng = 2_; C(r,1) (1)

The number of configurations for each given shape s;;,
Nij, depends only on the shape class, i.e. N;; = N; and
this is given by:

Ni=Clg-1i-1) = _(‘i)_!(;)i o (2)

The total number of possible configurations is given by
N=C(g+r—1,r—1).

In our example with ¢ = 4 and » = 4 we have Ng = 15
and N = 35 while Ny =1, Np =3, N3 =3 and Ny = 1.



4) Shape Entropy

We define shape entropy the quantity
Si =Kln Nz

where K is an afbitrary constant. This quantity co-
incides with the microscopic form given by Boltzmann
and Gibbs of the thermodynamic entropy initially intro-
duced by Clausius, if we interpret the number of config-
urations IV; for a given shape as the number of accessible
microstates for a given state of the thermodynamical sys-
tem. Specifically, Gibbs entropy is given by

Se¢=-K) plnp,
l

p; 1s the probability of the microstate of index 1 and the
sum 1s taken over all the microstates.



Shape and information

If the probability of the microstates are all the
same, then the Gibbs entropy reduces to the
Boltzmann entropy.

Thus if we 1dentify the microstate of a physical
object with a configuration that realizes one shape
we have that the shape entropy IS the
Boltzmann entropy of our object.



Shape and information

Up to this point we have shown that the shape of
a physical object can be associated with a
physical observable called “shape entropy” and
that the shape entropy IS the physical entropy
defined by Boltzmann.

What about information ?



5) Shape and information

To associate an information content with a shape we
select the following coding system: we use 2 bits per
site 1dentifying the occupation of a site as follows.

a particle on the:

- upper left 00,

- upper right 01, 00 | 01

- lower right 10, 0 | 1. |
lower left 11. [ —

One configuration is represented by the occupation of
the fours sites and thus requires 8 bits (whose order is
immaterial due to the undistinguishable character of the
particles).



5) Shape and information

Each configuration corresponds 00 | of | |
to a different set of 8 bits 10| 11 = N
00000000 10101001
AN 10100101

BB | 10010101
EEEEE | R
= Bl “un"
N
00100101

QV 00101001
00001001

00011011



5) Shape and information

How much information is there in each set of 8 bits?
(i.e. how much information is there in each configuration

and thus in each shape?)

00000000 10101001

~N - 10100101
B B | 10010101

EEEE | S

==l "
N\
00100101

QV 00101001
00001001

00011011



5) Shape and information

How much information is there in each set of & bits?

(i.e. how much information is there in each configuration
and thus in each shape?)

As we have seen, a given shape can be realized by N, different configurations.
The probability of a single configuration (represented by a given set of 8 bits)

is given by p, = 1/N. thus the shape information is computed according to
Shannon by:

N.
: 1 1
S; = —KZpllnpl = —KN,-N In N = K In N;
=1

I 1

This 1s same quantity that we have called shape entropy and thus we can interpret
the shape entropy as a measure of the information content of a given shape.



Shape and information

Thus we have seen that the configurational (shape entropy) of
Boltzmann — Gibbs and the Information Entropy introduced by
Shannon have similar formulations.

Sg =—-K Z i In py
[

Probability of a given Probability of a given
symbol within a given configuration within a
message given shape



The shape of things changes spontaneously with time




The shape of things changes spontaneously with time




The shape of things changes in a preferred direction

Sometimes this is called irreversibility of spontaneous transformations but is
simply a manifestation of the tendency of a system to evolve toward the
most probable shape (that has the largest number of configurations).

This is the content of the second law of thermodynamics according to

Boltzmann.



By randomly shaking our marble cartoon we will produce a shape change
according to a maximization of the shape entropy (information) associated
with each shape.
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We go from order to disorder
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before after

Question: can we change the shape of things the other way around?

If so,... is there a cost to pay?



Answer: YES !

e A 93

x O RIIRINAT 'g'-ggw_m,'g@g\ -
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after before

During a transformation you can decrease entropy by doing external work

This will cost you an energy Q =T AS

...0r more



Thus we have reached the conclusion that if we want to change shape
to any object we need to consider the change in entropy. If during the
transformation the entropy increases then the transformation does not
necessarily require energy (can be spontaneous!)

On the other hand, if during the transformation the entropy decreases
then the transformation does require external work and thus energy.



What about computers ?

A computer is a physical system (a machine) and as such is subjected to
the laws of thermodynamics.

During the computation the computer processes information.
Information is associated with (shape) entropy, thus we can say that
during a computation a computer may change its entropy.
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Information is physical

If during the information processing activity
we do decrease the computer entropy
then there is a price in energy to pay.

How much?



In order to understand how much energy we should spend, let’s consider how a
computer operates.

A computer processes information by using logic gates.

Each logic gate is a physical system that can assume a number of different
states corresponding to the result of logic operations.

Let’s consider the simplest component of a logic gate is the switch.

OPEN CLOSE

ZERO ONE ZERO ONE



There are two basic operations we can do with a switch

The switch operation (i.e. the change of state)

ZERO ONE

The reset operation (i.e. the set of a given state)
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ZERO ONE ZERO ONE



The single switch operation

ZERO ONE

Before the switch = 1 logic state
After the switch = 1 logic state

Change in entropy = S;— S, = Kz log(1) — Kg log(1) =0

No net decrease in entropy ---> no energy expenditure required



The reset operation

Before the reset = 2 possible logic states
After the reset = 1 logic state

Change in entropy = S;— S, = Kz log(1) — Kg log(2) = - Kg log(2)

Net decrease in entropy ---> energy expenditure required



THE LANDAUER'’S PRINCIPLE
(VON NEUMANN-LANDAUER BOUND)

The Landauer’s principle (1) states that the resetting operation comes
unavoidably with a decrease in physical entropy and thus is accompanied
by a minimal dissipation of energy equal to

Q= kBT log(2)

(1) R. Landauer, “Dissipation and Heat Generation in the Computing Process” IBM J.
Research and Develop. 5, 183-191 (1961),



Summary

1) Energy, entropy and Information are connected

2) Information is a manifestation of shape entropy

3) Changing shape may take energy

4) Computing 1s altering information and thus may take energy

To learn more:

Minimum Energy of Computing, Fundamental Considerations
L. Victor Zhirnov, Ralph Cavin and Luca Gammaitoni

in the book "ICT - Energy - Concepts Towards Zero - Power Information and
Communication Technology” InTech, February 2, 2014



